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Abstract—In supervised learning, we learn a statistical model
by minimizing a measure of fitness averaged over data. Doing so,
however, ignores the variance, i.e., the gap between the optimal
within a hypothesized function class and the Bayes Risk. We
propose to account for both the bias and variance by modifying
training to incorporate coherent risk which quantifies the uncer-
tainty of a given decision. We develop the first online solution to
this problem when estimators belong to a reproducing kernel
Hilbert space (RKHS), which we call Compositional Online
Learning with Kernels (COLK). COLK addresses the fact that
(i) minimizing risk functions requires handling objectives which
are compositions of expected value problems by generalizing the
two time-scale stochastic quasi-gradient method to RKHSs; and
(ii) the RKHS-induced parameterization has complexity which
is proportional to the iteration index which is mitigated through
greedily constructed subspace projections. We establish linear
convergence in mean to a neighborhood with constant step-
sizes, as well as the fact that its complexity is at-worst finite.
Experiments on synthetic and benchmark data demonstrate
that COLK exhibits consistent performance across training
runs, estimates that are both low bias and low variance, and
thus marks a step towards overcoming overfitting.

I. INTRODUCTION

In supervised learning, we devise a statistical model that
maps data points to decisions. This task underlies modern
technologies such as speech [1] and visual recognition [2],
autonomous control [3], and many others. Assuming a fixed
data representation, this task may be mathematically formu-
lated by hypothesizing that estimates take the form f (x)
and selecting f according to its ability to minimize a loss
function l ∶  ×  ×  → ℝ averaged over data:

f ∗ = argmin
f∈

Ex,y[l(f (x), y)] , (1)

where f ∶  →  maps data points x ∈  ⊂ ℝp to
target variables y ∈  (for classification  = {1,… , C}; for
regression  ⊂ ℝq), and the loss l(f (x), y) is small when
f (x) and y are close. Moreover,  is a hypothesized function
class to which the estimator f belongs. Define L(f ) as the
average of l(f (x), y) over data in (1). This formulation, with
data (x, y) as a pair of random vectors, is called the General
Learning problem [4].

As is well known in statistical learning [5], solving (1) is
only an approximation of the Bayes optimal estimator ŷ⋆ =
argminŷ∈ Ex,y[l(ŷ(x), y)] where  denotes the space of
all functions ŷ ∶  →  that map data x to target variables

A. Koppel and A. S. Bedi are with U.S. Army Research Lab-
oratory, Adelphi, MD, USA. (e-mail: alec.e.koppel.civ@mail.mil, am-
rit0714@gmail.com). K. Rajawat is with the Department of Electrical
Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
(e-mail:ketan@iitk.ac.in).

y. Suppose we try to minimize (1) and obtain estimate f̂ .
Then the performance difference associated with f̂ and the
Bayes optimal ŷ⋆ is

Ex,y[l(f̂ (x), y)] − min
f∈

Ex,y[l(f (x), y)]
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Bias
+ min
f∈

Ex,y[l(f (x), y)] − min
ŷ∈

Ex,y[l(ŷ(x), y)]
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Variance

(2)

where we add and subtract the optimal supervised cost in
(2) to obtain that this discrepancy decomposes into two
terms: the estimation error, or bias – the first line; and
approximation error, or variance1 – the second line. Typically
we make the bias small as the number of data points goes to
infinity, and resign ourselves to the fact that the variance is
an intrinsic penalty we suffer for a particular choice of .
Various methods have been proposed to mitigate the error

variance while minimizing the bias, such as regularization
[6] and risk analysis [7]. The former approach is designed
only to deal with the discrepancy between the empirical
and expected loss, but does not strike at the approximation
error in (2). Alternatively, authors in operations research [8]
propose to quantify the dispersion of an estimate with respect
to its target variable through coherent risk [7] as a surrogate
for the approximation error. An example is the semivariance:

Ṽar[l(f(x),y)]= Ex,y
{

(

l(f(x),y)−Ex′,y′[l(f(x′),y′)]
)2
+

}

. (3)

Alternatives include the p-th order semideviation or the
conditional value-at-risk (CVaR) [9], which quantifies the
loss function at tail-end quantiles of its distribution.
Suppose we fix a dispersion measure D[l(f (x), y)]. Then

we can formulate a variant of supervised learning that
accounts for approximation error [10]

f⋆ = argmin
f∈

Ex,y[l(f (x), y)] + �D[l(f (x), y)] (4)

where � scales the emphasis on estimation or approximation
error in (2). Solutions of (4), as compared with (1), may be
better attuned to outliers and higher-order moments of the
loss distribution. Thus, for classification, f may be equipped
to address situations where training examples possess charac-
teristics of multiple classes, whereas for regression (nonlinear

1The approximation error is a more general quantity than the error
variance, but under special cases, i.e., the quadratic loss, the former reduces
into the later plus an intrinsic measure of the noise of the data distribution.
We slightly conflate these quantities for the purpose of ease of explanation,
but they are different.
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Fig. 1: In supervised learning, we seek a large enough function
class  so as to ensure small approximation error (variance), but
small enough that its estimation error (bias) is may be minimized.
The Generalized linear models (GLMs) ŷ = wT x ( = ℝp) [15]
yield minimal bias through solvable convex programs but large ap-
proximation error (first column in Fig.1). GLMs may be robustified
through dispersion minimization as in (3) [16] (second column in
Fig.1), but their intrinsic approximation error is still large. Neural
networks [12] yield state of the art performance in terms of accuracy
across many domains [1]–[3] (third column in Fig.1) by having an
extremely general so their approximation error is small. However,
their bias is difficult to control due to the non-convexity defined by
their training. On the other hand, selecting  as a reproducing
kernel Hilbert space (RKHS) [13], [17] allows the learning of
nonlinear statistical models while preserving convexity, and hence
the risk coherence. Motivated by this fact, as well as recent efforts
to “deepen" kernel methods that obtain comparable accuracy to
neural networks [14], [18], we henceforth assume that f belongs to
a RKHS. We develop an online memory-efficient training scheme
for kernel methods which yields behavior akin to the fourth column.

filtering [11]), dips in signal to noise ratio may be more
gracefully interpolated.

To solve problems of the form (4), one must first choose a
function class  to which the estimator f belongs, and then
select the one that minimizes both the supervised loss as well
as its dispersion. The preferred choice for supervised learning
is a neural network [12], but training neural networks is a
non-convex problem, which makes controlling its estimation
error challenging, and in the case of (4), makes the dispersion
measure no longer a coherent risk [7]. On the other hand,
selecting  as a reproducing kernel Hilbert space (RKHS)
[13] allows the learning of nonlinear statistical models while
preserving convexity, and hence the risk coherence. Moti-
vated by this fact, as well as recent efforts to “deepen" kernel
methods that obtain comparable accuracy to neural networks
[14], we henceforth assume that f belongs to an RKHS.

With  specified, stochastic gradient descent (SGD) al-
gorithms [19] and its improvements [20]–[22] cannot be
used to minimize most risk functions such as (3) since
they contain expectations of nonlinear functions of L(f )
[cf. (1)]. Specifically, (4) is really an instantiation of an
optimization problem with nested expectations referred to as
compositional stochastic programming. To conduct stochas-
tic gradient descent on a compositional problem, one requires
two samples from the inner random variable and one from the
outer random variable to evaluate a single stochastic gradient

(“the double sampling problem" [23]).
To ameliorate this issue, we develop a nonparametric

extension of stochastic quasi-gradient (SQG) method [24],
which uses two-time-scale stochastic approximation: one
uses a quasi-stationary estimate of the inner expectation,
whereas the other executes stochastic descent [25]. However,
the choice of  as an RKHS, and sequential application
of the Representer Theorem [26], means the function pa-
rameterization grows with the iteration index [13], and thus
becomes untenable for streaming settings. In short, there is
no affordable memory method to solve (4) over an RKHS.
Thus, we:

∙ extend SQG to RKHS, which we compress using match-
ing pursuit [27], [28] (Sec. III), which we call Compositional
Online Learning with Kernels (COLK). We tie the compres-
sion to the step-size to ensure descent [29], [30].

∙ guarantee convergence to an optimal neighborhood
whose radius depends on step-sizes and problem constants
under constant learning rates and compression (Theorem ??),
which occurs at a linear rate (Theorem 1). Further, its worst-
case complexity is finite (Theorem 2). That is, we achieve
a near-optimal approximation to the NP-hard problem of
selecting the optimally representative data subset.

∙ empirically (Sec. V), COLK yields estimators whose bias
and variance is small, first on a synthetic regression problem
with random outliers injected, and then on the lidar
benchmark data. We observe that COLK yields consistently
accurate performance across training runs, meaning that
it does not overfit, in contrast to other methods, whose
performance is high variance. In short, COLK experimentally
behaves as the fourth column of Fig. 1.

II. COMPOSITIONAL OPTIMIZATION WITH KERNELS

In this work, we solve a generalization of the problem
(4) stated in Section I with the understanding that it is a
special case. We address problems where the objective is a
composition of two functions, each of which is an expected
value over a set of functions parameterized by a random pair.
That is, random variables �t ∈ ℝp and �t ∈ ℝp. In general
both the random variables are allowed to be dependent, but
for the ease of analysis and understanding, we assume that
� ∈ � ⊂ ℝp, � ∈ � ⊂ ℝp and both � and � are independent
of each other. Considering these random pairs, the cost takes
the form J (f ) ∶= (L◦H)(f ), where H(f ) = E�

[

h�(f (�))
]

is a map H ∶  → ℝm that is an expectation over a set of
random functions h�(f (�)). Similarly, L(u) = E�

[

l�(u)
]

is
a map L ∶ ℝm × ℝ → ℝ that is an expected value over a
random collection variable. Further,  is a function space
to be subsequently specified. In this work, we focus on the
functional compositional stochastic program:

min
f∈

E�
[

l�
(

E�
[

h�(f (�))
])]

+ �
2
‖f‖2 , (5)

where J (f ) is assumed to be convex in function f and add a
Tikhonov regularizer �2‖f‖ to ensure strong convexity [31],
defining the regularized loss as R(f ) ∶= J (f )+(�∕2)‖f‖ .
The feasible set  of (5), the domain of H , and hence



J , is not Euclidean space ℝp, as in [24], but instead is
a Hilbert space equipped with a unique kernel function
� ∶  ×  → ℝ such that: (i) ⟨f,�(u,⋅)⟩ = f (u) , and
(ii)  = span{�(u,⋅)} for all u ∈  . where ⟨⋅, ⋅⟩ denotes
the Hilbert inner product for  and  ∶= � ∪ � denotes
the union of data domains � and �, whose elements u are
random variables � or �. We further assume that the kernel
is positive semidefinite, i.e. �(u,u′) ≥ 0 for all u,u′ ∈  so
that it is a Mercer kernel. This function space, as mentioned
in Section I, is called reproducing kernel Hilbert spaces
(RKHS) and its elements have bounded Hilbert norm [32].

For regularized empirical risk minimization (i.e., the
sample average approximation of (5) for some fixed N
realizations of � and �), the Representer Theorem [32],
owing to the strong convexity guaranteed by the regularizer,
establishes that the optimal f in the RKHS  admits a
basis representation in terms of kernel evaluations of only
the training set:

f (u) =
N
∑

n=1
wn�(�n,u) , (6)

where w = [w1,⋯ , wN ]T ∈ ℝN denotes the weight vector.
The upper summand index N in (6) is henceforth referred
to as the model order. Examples include the polynomial and
the radial basis , i.e., �(u,u′) =

(

uT u′ + b
)c and �(u,u′) =

exp{−(‖u − u′‖22)∕2c
2}, respectively, where u,u′ ∈  .

III. COMPOSITIONAL ONLINE LEARNING WITH KERNELS

Our goal is to solve (5) over the RKHS  in an online
manner through sequentially revealed independent and iden-
tically distributed realizations of � and �, but no knowledge
of the distribution from whence they come. Related ideas
are developed for continuous Markov Decision Problems in
[30] and vector-valued problems in [24]. The building blocks
of the proposed algorithm Compositional Online Learning
with Kernels (COLK) are a functional generalization of
SQG (Section III-A) and sparse subspace projections that are
greedily constructed using matching pursuit (Section III-B).

A. Stochastic Quasi-gradient Descent in Kernel Space
To understand why functional stochastic quasi-gradient is

required, consider applying functional SGD to (5). We would
require unbiased sampling of the stochastic gradient

⟨∇fh�t (f (�t)),∇l�t (E[h�(f (�))])⟩ + �f . (7)

However, the stochastic gradient (7) at training examples
(�t,�t) is not available due to the expectation involved in
the argument of ∇l (⋅), which precludes use of SGD for (5).
A second realization of � is required to estimate the inner-
expectation, which has been identified as the “double sam-
pling problem" in reinforcement learning [23] and stochastic
optimization [25], [33].

Thus, we propose using a two time-scale stochastic method
called stochastic quasi-gradient (SQG) [34], [35]. SQG op-
erates by defining a vector sequence gt to track the instanta-
neous functions h�t (f (�t)) evaluated at sample pairs �t:

gt+1 = (1 − �k)gt + �kh�t (f (�t)) (8)

with the intent of estimating the expectation E
[

h�(f (�))
]

. In
(8), �t is a scalar learning rate chosen from the unit interval
(0, 1) which may be either diminishing or constant. Then, we
define a function sequence ft ∈  initialized as null f0 = 0,
that we sequentially update using stochastic quasi-gradient
descent:

ft+1 = (1 − ��t)ft − �t⟨∇fh�t (f (�t)),∇l�t (gt+1)⟩ , (9)

where �t is a step-size parameter chosen as diminishing
or constant. Further note that the term ⟨∇fh�t (f (�t)) is a
function in , and thus infinite dimensional. However, by
applying the chain rule and the reproducing property of the
kernel (“the kernel trick") stated in (i), we obtain

⟨∇fh�t (f (�t)),∇l�t (gt+1)⟩ (10)

=
m
∑

i=1
∇fhi�t (f (�t))

)l�t (u)
)ui

|u=gt+1

=
m
∑

i=1

)hi�t (!)

)!
|!=f (�t) ×

)l�t (u)
)ui

|u=gt+1�(�t, ⋅)

=⟨h′
�t
(f (�t)),l′�t (gt+1)⟩�(�t, ⋅)

In the last line of (10), we have used the vector inner product
notation to denote the summation on the previous lines. Note
that the kernel function �(�t, ⋅) is common and therefore
outside the inner product in (10). Utilizing this notation, the
function update equation of (9) may be written as

ft+1 = (1 − ��t)ft − �t⟨h′
�t
(f (�t)),l′�t (gt+1)⟩�(�t, ⋅) . (11)

Observe that in (11), SQG iteration in RKHS yields the
parametric updates on the coefficient vector w and kernel
dictionary U

Ut+1 =
[

Ut, �t
]

(12)

wt+1 =
[

(1 − �t�)wt,−�t⟨h′
�t
(f (�t)),l′�t (gt+1)⟩

]

with detailed derivation provided in Appendix ??. In (12),
observe the kernel dictionary parameterizing function ft is
a matrix Ut ∈ ℝp×(t−1) which stacks past realizations of
random variables �, and the coefficient vector wt ∈ ℝt−1

as the associated scalars in the kernel expansion (??) which
are updated according to (12). The function update of (11)
implies that the complexity of ft is (t), due to the fact
that the number of columns in Ut, or model order Mt,
is (t − 1), and thus is unsuitable for settings where the
total number of data samples is not finite, or are arriving
sequentially and repeatedly. This is an inherent challenge of
extending [24] to learning nonlinear statistical models that
belong to RKHS. To address this, we project (11) onto low-
dimensional subspaces, inspired by [29], which we detail in
the following subsection.



Algorithm 1 Compositional Online Learning with Kernels
Require: {�t, �t, �t, �t, �t}t=0,1,2,...

initialize f0(⋅) = 0,D0 = [],w0 = [], i.e. initial dictionary,
coefficient vectors are empty
for t = 0, 1, 2,… do

Update auxiliary variable gt+1 according to (8)
gt+1 = (1 − �k)gt + �kh�t (f (�t))

Compute functional stochastic quasi-gradient step (11)
f̃t+1= (1 − ��t)ft − �t⟨∇fh�t (f (�t)),∇l�t (gt+1)⟩

Revise function parameters: dictionary & weights (12)
D̃t+1= [Dt, �t ,�t]
w̃t+1=[(1−�t�)wt, −�t⟨∇fh�t (f (�t)),∇l�t (gt+1)⟩]

Compress parameterization via KOMP (Algorithm ??)
(ft+1,Dt+1,wt+1) = KOMP(f̃t+1, D̃t+1, w̃t+1, �t)

end for

B. Greedy Subspace Projections
To control the unbounded growth of model order Mt =

(t−1) with t, we adopt the idea of bias-inducing projections
onto low-dimensional subspaces as in [29]. Specifically, we
construct a function sequence by orthogonally projecting
functional SQG iterates onto subspaces D ⊆  that
consist only of those that can be represented using some
dictionary D = [d1, … , dM ] ∈ ℝp×M , i.e., D = {f ∶
f (⋅) =

∑M
n=1wn�(dn, ⋅) = wT �D(⋅)} = span{�(dn, ⋅)}Mn=1.

Here we define dn ∈ ℝp as a model point which stacks
exemplar realizations of �, i.e., dn = �n. Further define
�D(⋅) = [�(d1, ⋅)… �(dM , ⋅)], and KD,D as the resulting
kernel matrix from this dictionary. We enforce parsimony
in function representation by selecting dictionaries D such
that Mt ≪ t. Specifically, we replace the update (9) by a
projected variant onto a subspace spanned by dictionary Dt:
ft+1 ∶=Dt+1

[

(1 − ��t)ft − �t⟨h′
�t
(f (�t)),l′�t (gt+1)⟩

]

. (13)

The function (13) can be expressed in terms of parameter
space of coefficients wt+1 and dictionary updated step Dt+1
as detailed in Appendix ?? and Appendix ?? respectively.
The function f̃t+1 defined by SQG without projection is
parameterized by dictionary D̃t+1 = [Dt; �t], whose model
order is M̃ =Mt+1. We form Dt+1 by selecting a subset of
Mt+1 columns from D̃t+1 that best approximate f̃t+1 in terms
of Hilbert norm error. We use kernel orthogonal matching
pursuit (KOMP) [28] with allowed error tolerance �t to find
a kernel dictionary matrix Dt+1 based on the one which
adds the latest samples D̃t+1. The variant of KOMP we
propose using, called Destructive KOMP with Pre-Fitting
(see [28], Section 2.3), is summarized in Algorithm ??
detailed in Appendix ??. The method, called Compositional
Online Learning with Kernels (COLK), is summarized in
Algorithm 1. Note that if �t = 0, no compression happens,
and the model order is Mt = (t − 1) as defined by (12). For
constant step size result, we use �t = � for all t.

IV. BALANCING OPTIMALITY AND MODEL COMPLEXITY

This section establishes the convergence of Algorithm 1
to the minimizer of (5) which is a generalization of (4)

under constant step size. To do so, some technicalities are
required to be subsequently introduced. Then, we are able to
establish exact convergence under attenuating learning rates
and compression budget (see Theorem 1 in [37]), which we
build upon to establish the following results that adeptly
balance optimality with parsimony.
First, denote the filtration t as a time dependent sigma al-

gebra defined as t ⊃ ({fu, gu}tu=0∪{�s, �s}
t−1
s=0). This sigma

algebra is used for performing the conditional expectation at
time time instant t in the analysis. The assumptions required
for the analysis of this work are stated next.

AS1. At each time instant t, the second moment of the
derivative of inner function h′

�t
(f (�t)) and outer function

l′�t
(

gt+1
)

is bounded as

E
[

|h′
�t
(f (�t))|2

|

|

|

�t
]

≤ Gh and E
{

|l′�t
(

gt+1
)

|

2 |
|

|

t
}

≤ Gl ,
(14)

where Gh and Gl are finite constants. Moreover, the second
moment of the projected stochastic quasi-gradient of the
objective function (cf. (5)) is bounded as

E
[

‖∇̃fR(ft, gt+1; �t,�t)‖2
|

|

|

t
]

≤ �2f . (15)

In addition, define �t ∶= h�t (ft; �t) with �̄t = E
[

�t
|

|

|

�t
]

.
Then �t has finite variance as

E[‖�t − �̄t‖2
|

|

|

t] ≤ �2� . (16)

AS 2. The instantaneous derivative of the outer function
l�(⋅) is Lipschitz continuous with respect to its first scalar
argument so that we may write

|l′� (u) − l
′
� (v)| ≤ Ll‖u − v‖ . (17)

AS3. The expected value of the inner function is Lipschitz
with respect to its argument:

|E�[h�(f )] − E�[h�(f ′)]| ≤ Lh‖f − f ′
‖ . (18)

Assumption 1 follows from the compactness of the feature
space �∪�. Assumption 1 is regarding the second moments
of the derivatives which limits the variance of the stochas-
tic approximation error. This assumption is typical in the
literature [36] and usually holds in practice. Assumption 2
and 3 regarding the Lipschitz continuity of the outer and
inner function holds for most applications, and holds for
most differentiable functions. These assumptions hold for the
experiments in the following section.

Theorem 1. Consider use of a constant step size �t = �
and �t = � and compression budget �t = � = C�2, and
regularizer � = LlU2G2

h�∕� + �0 such that �0 < 1.
The mean sub-optimality E

[

‖ft − f⋆‖2
]

of the functions
generated by Algorithm 1 converges linearly to an error
bound, i.e.

E
[

‖ft−f⋆‖2
]

≤
(

1−�0
)t E

[

‖f0 − f⋆‖2
]

+  (�) . (19)

The rate result in (19) (proof in [37]) describes the non-
asymptotic behavior of E

[

‖ft − f⋆‖2
]

, and is comparable



to the learning guarantees of classical stochastic optimization
methods. For a given �0, Theorem 1 states that ft converges
linearly towards the (�) ball around the f⋆ in RKHS.
This result is important since it explicitly characterizes the
performance of the algorithm after t steps. However, if we
assume a bound on the initialization term ‖f0 − f⋆‖ ≤ B,
it is possible to find how may steps t are required to enter
a (�) ball around the optimal f⋆. An additional merit of
using constant step-sizes is the model order of the COLK
function sequence is at-worst finite, and defined by the metric
entropy (covering number) of the feature spaces:

Theorem 2. Consider use of constant step-sizes �t = �,
�t = � and constant compression budget � = C�2, with
regularization� = LlU2G2

h�∕� + �0 = (�∕� + 1). The
model orderMt of function ft generated by Algorithm 1, i.e.
number of columns in its current dictionary Dt, is bounded:
Mt ≤ M∞ < ∞ for all t ≥ 0, and the limiting function
f∞ = limt→∞ ft has finite model order.

To establish Theorem 2 (proof in [37]), we require an
additional assumption on the boundedness of the scalar
component of the gradients of the inner and outer functions
as defined in Assumption 5.

AS4. (Gradient boundedness) The instantaneous gradient of
both the inner function l′� (u) and outer function h′

�(f (�))
are bounded as

|l′� (u)| ≤ Cl and |h′
�(f (�))| ≤ Ch. (20)

The finite model order claim in Theorem 2 is significant as
it ensures that the size of the kernel dictionary Dt is finite and
does not grow unbounded with time. Note further that the
result in Theorem 2 sets the present work apart from similar
online learning frameworks [13], [38] where the memory size
or budget is often selected heuristically. In contrast, given �,
the model order Mt obtained from running the algorithm is
defined by the problem context and does not grow arbitrarily.

V. EXPERIMENTS

To show the efficacy of the proposed algorithm, we
consider a problem of nonlinear regression (filtering) over
a p-dimensional parameter space. We have again have two
sets of random variables (x, x′) ∈  ⊂ ℝp but now the
target variables are real valued y, y′ ∈ ℝ. The merit criterion
of model fitness for a given training example (xn, yn) is the
humble square loss:

l(f (xn), yn) = (f (xn) − yn)2 (21)

However, due to the bias-variance tradeoff in Section I,
we do not want to only minimize the expectation of (21)
plus a regularizer �‖f‖2 over all data (x, y), but also some
surrogate [8] for the approximation error over data (x′, y′).
Due to the fact that many probability distributions may be
completely characterized by their moments [39][Chapter 3],
a reasonable choice for the risk is to choose the dispersion

measure as all p-th order central moments,

D[l(f(x), y)]=
P
∑

p=2
Ex,y

{

(

l(f(x),y)−Ex′,y′[l(f(x′),y′)]
)p
}

(22)

which are just deviations raised to the p-th power [10].
However, since the computational overhead scales with P ,
we truncate the upper summand index in (22) to P = 4.
It is remarked that the dispersion measure in (22) is non-
convex which is used for the experimental purposes which
corresponds to the variance, skewness, and kurtosis of the
loss distribution. Note that (22) may be convexified through a
positive projection of (l(f(x),y)−Ex′,y′[l(f(x′),y′)]), in which
case the standard deviation becomes a semi-deviation, as do
its higher-order analogues. However, for simplicity, we omit
the positive projection in experiments. Next, we apply the
proposed algorithm to solve the nonlinear regression problem
which results in the following updates.

gt+1 = (1 − �t)gt + �t(ft(x′t) − y
′
t)
2

f̃t+1 = (1 − ��t)ft−�
{

2(ft(xt) − yt)�(xt, ⋅) (23)

+ �
4
∑

p=2
m(p, gt+1)[2(ft(xt)−yt)�(xt,⋅)−2(ft(x′t)−y

′
t)�(x

′
t ,⋅)]
}

where m(p, gt+1) ∶=
[

p((ft(xt) − yt)2 − gt+1)p−1
]

.
We evaluate COLK on synthetic and real data sets whose

distributions are skewed or heavy-tailed, and compare its
test accuracy against existing benchmarks that minimize
only bias. Firstly, we evaluate performance on synthetic
data regression outliers which has a heavier tailed
distribution, i.e., more outliers are present. We inquire as
to which methods overfit versus learn successfully: COLK
(Algorithm 1), or methods such as BSGD [40], NPBSG [38],
POLK [29].

We generate 20 different sets from the same data distribu-
tion and then run both POLK and COLK to learn a regression
function. To generate the synthetic dataset regression
outliers, we used the function y = 2 ∗ x + 3 ∗ sin(6x)
as the original function and target y’s observed after adding
a zero mean Gaussian noise to 2 ∗ x + 3 ∗ sin(6x). First we
generate 60000 samples of the data, and then select 20% as
the test data set. From the remaining 4800 samples, we select
50% at random to generate 20 different training sets. We run
COLK over these training set with the following parameter
selections: a Gaussian kernel with bandwidth � = .06, step-
size parameters � = 0.02, � = 0.01, � = K�2 with parsimony
constant K = 5, variance coefficient � = 0.1, and mini-
batch size of 1. Similarity, for POLK we use � = 0.5
and � = K�2 with parsimony constant K = 0.09. We fix
the kernel type and bandwidth across the different methods,
and the parameters that define comparator algorithms are
hand-tuned to optimize performance with the restriction that
their model complexity is comparable to each other. We run
these algorithms for different realizations of training data and
evaluate their test accuracy as well as its standard deviation.

Before summarizing these results, we present an example
sample path of Algorithm 1 for this experiment for the
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Fig. 2: COLK experimental behavior on a regression on a synthetic data set, without and with training outliers. The presence of outliers
does not break the learning stability, and test accuracy remains comparable, at the cost of increased complexity. Here COLK minimizes
bias, variance, and third and fourth-order deviations.

regression outliers data, with and without outliers,
in Fig 2. Specifically, Fig. 2a shows that the mean plus
variance of the loss function is minimized as the number
of samples processed increases. The time-series of the test-
set error of COLK is given in Fig. 2b which converges as the
training samples increases. In Fig. 2c we plot the model order
of the function sequence defined by COLK, and observe it
stabilizes over time regardless of the presence of outliers.
These preliminary results validate the convergence results
established in Section IV. The advantage of minimizing the
bias as well as variance is depicted in Fig. 2d which plots
the learned function for POLK and COLK for two training
data sets. It can be observed that how POLK learning varies
from one training set to other while COLK is robust to this
change.

We now discuss our experimental results in terms of how
COLK compares to existing techniques that only fit to the
mean loss. We run COLK as well as the others for 20
total training runs and report the average test error and the
standard deviation in the box and whisker plot given in Fig. 3.
The box represents average test error and whisker represents
the standard deviation of the corresponding estimate. Ob-
serve that COLK yields the lowest error as well as the lowest
standard deviation, meaning it yields inferences that are both
low bias and low variance. To check the proposed algorithm
for real data, we consider the performance of filtering laser
scans to interpolate range to a target via the lidar data [41]
(with added outliers) with the results shown in Fig. 5. It is
clear from the figure that the proposed algorithm is robust
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Fig. 3: Statistical Accuracy Comparison

Fig. 4: COLK, with � = 0.02, � = �2, � = 0.01, K = 5, � =
0.1, bandwidth c = .06 as compared to other methods for online
learning with kernels that only minimize bias on the regression
outliers data. This figure reports test error averages over 20
training runs, and we report the standard deviation of test error as
error bars. COLK yields both a minimal error rate and variability.

to outliers in the data.
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