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ABSTRACT
Projection based algorithms are popular in the literature for
online convex optimization with convex constraints and the
projection step results in a bottleneck for the practical imple-
mentation of the algorithms. To avoid this bottleneck, we pro-
pose a projection-free scheme based on Frank-Wolfe: where
instead of online gradient steps, we use steps that are collinear
with the gradient but guaranteed to be feasible. We establish
performance in terms of dynamic regret, which quantifies cost
accumulation as compared with the optimal at each individual
time slot. Specifically, for convex losses, we establishO(T 1/2)
dynamic regret up to metrics of non-stationarity. We relax the
algorithm’s required information to only noisy gradient esti-
mates, i.e., partial feedback and derived the dynamic regret
bounds. Experiments on matrix completion problem and back-
ground separation in video demonstrate favorable performance
of the proposed scheme.

Index Terms— Online learning, Frank-Wolfe algorithm,
convex optimization, gradient descent.

1. INTRODUCTION

Many learning problems may be formulated as complex data-
dependent optimization problems, as in the design of methods
for speech recognition [1], perception [2], and locomotion [3].
These technologies upend several orthodoxies in the design
of optimization algorithms: finite time performance is priori-
tized, updates must be memory-efficient despite the scale of
training sets, and drift in data distributions must be mitigated.
Recently, online optimization has gained popularity as a way
to meet these specifications in disparate contexts such as non-
parametric regression [4,5], portfolio management [6], control
in robotics [7]. The framework of online optimization decom-
poses a complex problem into a sequence of sub-problems,
which inherently arises when one operates on subsets of data
per step due to the sheer scale of full training sets. Alter-
natively, in many problems, the cost is an expectation of a
collection of loss functions parameterized by data only acces-
sible via samples [8, 9].

In literature, central to online optimization is online gra-
dient descent [14], whose static regret is O(T 1/2). Improve-
ments are possible for strongly convex losses [15], for a de-
tailed review, see [13]. The constraint satisfaction at each time
slot poses challenges: methods based on Lagrangian relax-
ation such as ADMM [16] or saddle point [17] cannot ensure

feasibility of individual actions. In contrast, projections do so
but require a quadratic problem to be solved at each step [18].
Frank-Wolfe (conditional gradient) method moves in a fea-
sible direction that is collinear with the gradient through the
solution of a linear program [19], and has gained attention
recently as a way to avoid projections in online constrained
settings [10, 20]. We build upon these successes to charac-
terize the behavior of Frank-Wolfe method in non-stationary
settings. For non-stationary learning problems, several works
characterize sublinear growth of dynamic regret up to factors
depending on VT , DT , and WT , as detailed in Table 1. i.e.,
O(T 1/2(1 +WT )) for OGD or mirror descent with convex
losses [14, 21], expressions that depend on multiple metrics
of non-stationarity [22, 23], and improved rates O(1 +WT )
in strongly convex cases [24, 25]. Here, VT , DT , and WT are
the metrics of non-stationarity where VT denotes the rate of
change of objective function, DT describes the rate of change
of objective function gradient, and WT defines the rate of
change of the optimal value. However, all existing works in
the literature execute projections, which owing to the complex-
ity requirements, may prohibit them from yielding solutions
in a timely fashion when data drifts, in contrast to Frank-
Wolfe [10]. Furthermore, in practice, exact online gradients
may be unavailable [26]. In this work, we take inspiration
from [26] to propose such methods that may operate effec-
tively in the presence of non-stationarity.

Contributions: In this work, we put forth a collection
of online optimization schemes that obviate the need for pro-
jection and are robust to gradient estimation error, leveraging
recently developed averaging techniques [27], and characterize
their performance amidst non-stationarity. In particular: (i) We
generalize Frank-Wolfe method to non-stationary problems
(Sec. 3) and establish O(T 1/2) dynamic regret upto metrics
of non-stationarity when losses are convex (Sec. 4). (ii) We
generalize the algorithm to the setting where we only have
access to noisy estimates of online gradients (partial feedback,
Sec. 3.1), and establish that its dynamic regret (Sec. 4.1). (iii)
To show the efficacy of the proposed algorithm experimentally,
we observe that Online Frank-Wolfe attain favorable perfor-
mance relative to alternatives [13] on non-stationary matrix
completion and background extraction in video (Sec. 5). In
particular, Frank-Wolfe yields a significant reduction in the
computational time, while attaining comparable performance,
to existing approaches. In the experiments, we have also in-
cluded a variance reduced version of the proposed algorithm



Reference Loss function. Step-size Batch Regret definition Rate
[10] (L/D)t−1/4-strongly convex diminishing O(t) ∑T

t=1 F (xt)− F (x?) O
(
T 3/4

)

[11] convex diminishing O(1) E
[
F (xT )− F (x?)

]
O(1/T 1/3)
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Ft(xi,t)− Ft(x?t )

]
O
(√
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1−σ2(W )

)

[13] 1-strongly convex diminishing O(1) ∑T
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Ft(xt)− Ft(x?)

]
O
(
T 3/4

)

This work convex constant O(1) ∑T
t=1 Ft(xt)− Ft(x?t ) O

(√
T
(
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√
DT
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This work convex (partial feedback) constant O(1) ∑T
t=1 E

[
Ft(xt)− Ft(x?t )

]
O
(
1 + T

5
6 +
√
TVT + T

5
6

√
DT

)

Table 1: Summary of the related works compared to the present work.

named as “Meta Frank-Wolfe” algorithm similar to the one
proposed in [26] but for dynamic settings.

2. PROBLEM FORMULATION

In online convex optimization (OCO), at each time t, a learner
selects an action xt after which an arbitrary convex cost Ft
is revealed. The standard performance metric for this setting
is to compare the action sequence {xt}Tt=1 up to some time-
horizon T with a single best action in hindsight, defined as

the regret RegST =
T∑
t=1

Ft(xt)−minx∈X
T∑
t=1

Ft(x). However,

whenever training data defines trajectories, as is the case in
increasingly salient learning problems in dynamical systems
or reinforcement learning [28, 29], then hypothesizing that
samples come from a stationary distribution is invalid. While
the use of buffers experimentally sidestep this issue [30], rigor-
ously addressing it requires treating learning as non-stationary
stochastic optimization [22].

In general, this perspective requires tuning algorithms to
mixing rates of the data distribution [31, 32], which substan-
tially impact performance but mixing rates are typically un-
known. Online optimization in the presence of non-stationarity
avoids these difficulties by instead defining an alternative quan-
tifier of performance called dynamic regret: the difference
between the instantaneous cost accumulation and the cost of
the best action at each time slot [23]

RegDT =

T∑

t=1

Ft(xt)−
T∑

t=1

min
x∈X

Ft(x). (1)

OCO concerns the design of methods such that RegDT grows
sublinearly in horizon T for a given sequence of loss function
Ft, i.e., the average regret goes to null with T ( no-regret [14]).
Unfortunately, exactly tracking the optimizer defined by an
arbitrarily varying optimization problem is impossible [22,33],
and the best one may hope for is to be competitive up to metrics
of non-stationarity such as the loss variation VT and gradient
variation DT defined as [22, 24]

VT :=

T∑

t=1

sup
x∈X
| Ft(x)− Ft−1(x) |, and

DT :=
T∑

t=1

‖∇Ft(xt)−∇Ft−1(xt−1)‖2 . (2)

Our goal in this work is the design of algorithms such that
dynamic regret grows sublinearly in T up to multiplicative
factors of the variable and gradient variations defined as VT
and DT , i.e., RegDT = o(T (VT +DT )). Next, we describe the
algorithm we proposed to minimize the dynamic regret defined
in (1) for the online constrained optimization problems.

3. ONLINE FRANK-WOLFE ALGORITHM

We begin by deriving standard Frank-Wolfe (conditional gra-
dient) algorithm adapted to the setting of online optimization.
For time t, assuming that action xt has been chosen and the
instantaneous cost Ft is revealed, we may evaluate the online
gradient as∇Ft(xt). Based upon this information, we define
directional vector dt by the recursion:

dt = (1− ρ)dt−1 + ρ∇Ft(xt) (3)

with initial vector d0 = 0, and ρ ∈ (0, 1] is a constant momen-
tum parameter. The smoothing step (3) permits us to gracefully
apply the algorithm to the more challenging setting of partial
feedback or non-convex losses discussed later [11]. Then,
we seek a direction vt that is parallel to dt inside feasible
set X , the source of the name conditional gradient. This is
accomplished by solving the following linear program (LP)

vt = argmin
v∈X
〈dt,v〉. (4)

Then, the action xt+1 for subsequent time t+ 1 is given by

xt+1 = (1− γ)xt + γvt, (5)

where γ < 1 is a time-invariant step-size. In the following
subsection, we discuss a generalization to partial feedback.
The method is summarized as Algorithm 1.

3.1. Partial Feedback

To implement the Algorithm 1, the exact gradient ∇Ft(xt)
must be computed at each iteration t. In practice, this com-
putation may be unavailable or prohibitively costly to obtain.
For instance, in expected risk minimization [8], ∇Ft(xt) de-
notes the full batch gradient, which, if the number N of sam-
ples {zn}Nn=1 in the training set is large, is costly to evaluate



Algorithm 1 Online Frank-Wolfe Algorithm (OFW)

1: Require step sizes 0 < ρ < 1 and 0 < γ < 1 .
2: Initialize t = 0 , d0 = 0 and choose x0 ∈ X .
3: for t = 1,2.......do.
4: Update gradient estimate dt = (1 − ρ)dt−1 +
ρ∇Ft(xt)

5: Compute vt = argminv∈X 〈dt,v〉
6: Update xt+1 = (1− γ)xt + γvt
7: end for

[34,35]. Alternatively, one may simply receive only noisy sam-
ples of the gradient, but not its true value, as is the case with re-
ceived signal strength-based localization [36] or learned mod-
els of mismatched kinematics in optimal control [37]. For such
situations, only a noisy estimate ∇ft(xt, zt) of the online gra-
dient∇Ft(xt) is available such that∇Ft(x) = E [∇ft(x, zt)].
Here zt denotes a realization of random variable z that param-
eterizes the noisy online gradient.

For example, consider the problem of online matrix com-
pletion, which seeks the best possible low rank approximation
of a given matrix Mt ∈ Rm×n. Denote as Xt ∈ Rm×n the
low-rank approximation. In each round, the entries of matrix
dented as (i, j) ∈ OBt where OBt is the batch of new entries,
are updated. The problem is then defined as [13, Chap. 7]

min
Xij

∑

(ij)∈OBt

(Xij −Mij,t)
2 such that ‖X‖∗ ≤ k. (6)

In practice, one observes the entries estimates {M̂ij,t} in an
online manner such that M̂ij,t = Mij,t + zt, where zt is the
stochastic error in the matrix entries estimation. The true value
Mij,t is unknown, and hence only partial feedback is available.
The parameter ρ ∈ (0, 1) is used to track the gradient estimate
for the partial feedback settings. The error in gradient estimate
over the entire time horizon is bounded asymptotically if we
choose ρ properly. We note that if we select ρ = 1, i.e., use
stochastic gradients, then the gradient estimation error over
entire time horizon diverges due to the variance of estimates.

4. DYNAMIC REGRET ANALYSIS

In this section, we characterize the performance of Algorithm
1 in the presence of non-stationarity as quantified by dynamic
regret. First, we state some required technical assumptions.

[A1.] The set X is convex and compact with diameter D,
i.e., for all x,y ∈ X , it holds that ‖x− y‖ ≤ D.

[A2.] The gradient of loss ∇Ft(·) is Lipschitz with
parameter L1, which implies that ‖∇Ft(x)−∇Ft(y)‖ ≤
L1 ‖x− y‖ for all t and (x,y) ∈ X .

The Assumptions A1-A2 are standard in online learning
[11,24]. Assumption A1 ensures constrained set X is compact.
Assumption A2 bounds the loss function gradient. Next, we
present the dynamic regret result of Algorithm 1.

Theorem 1 Under the Assumptions A1-A2, for the iterates
generated by Algorithm 1, under step-size selection γ = 1√

T
,

it holds that

RegDT ≤ O
(√

T
(
1 + VT +

√
DT

))
. (7)

Theorem 1 (see [38] for proof) establishes convergence of
Algorithm 1 for non-stationary problems in terms of dynamic
regret up to factors depending on VT and DT , as defined in
Section 1. This is the first time a projection-free scheme
has been demonstrated as theoretically effective for dynamic
learning problems, which paves the way for use in applications
with data drift across time. Note, however, that Algorithm
1 requires exact gradient information at each step, which in
applications to learning online with estimation errors such
as in (6), may be unavailable, motivates the partial feedback
setting which we analyze next.

4.1. Regret Analysis under Partial Feedback

To analyze performance in when feedback is partial, before
proceeding, we state an additional required assumption that
limits the variance of stochastic approximation error.

[A3.] The variance of the unbiased stochastic gra-
dients ∇F̃t(x, z) is bounded above by σ2, implies that
E
[
‖∇ft(x, z)−∇Ft(x)‖2

]
≤ σ2 for all t.

Theorem 2 Under the Assumptions A1-A3, for the iterates
generated by Algorithm 1, the following expected dynamic
regret bounds hold:

T∑

t=1

[
E [Ft(xt)]−Ft(x?t )

]
≤O
(
1+T

5
6+
√
TVT+T

5
6

√
DT

)
(8)

under step-size and inertia selections γ = 1√
T

, ρ = 1
T 1/3 .

Theorem 2 (see [38] for proof) establishes that the dynamic re-
gret for Algorithm 1 is sublinear despite only having access to
noisy estimates of online gradients, given appropriate stepsize
and averaging parameter selections.

5. EXPERIMENTS

In this section, we experimentally evaluate the proposed al-
gorithm on matrix completion and background subtraction in
video, both of which demonstrate the merits of online Frank-
Wolfe. In particular, we observe a favorable tradeoff between
complexity and accuracy by virtue of avoiding computationally
costly projections.

Online Matrix Completion: We solve (6) using Algo-
rithms 1 and compare performance with alternatives such as
OGD which requires projections in Fig. 2a. We have presented
the results for both exact as well as partial gradient feedback
(we call it inexact gradient). For the experiments, we have
also included a variance reduced version of the proposed algo-
rithm called “Meta-Frank Wolfe” which improves the result as
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Fig. 1: Background Extraction Problem: 1st (OFW) and 3rd (Meta-Frank Wolfe) row represents results for instant 1 of the video; the 2nd
(OFW) and 4th (Meta-Frank Wolfe) row represent instant 2 of the video, which is clear from the 1st column. In the figure, RS denotes random
sampling and the percentage denotes how many samples from the full gradient are utilized for the algorithm updates. The proposed algorithm
performs really well for this application since the cars are effectively removed from the frame, as clear from 2nd to 5th columns. Meta-Frank
Wolfe is a variance reduced version of the proposed OFW algorithm.

Algorithm Exact Gradient RS(75%) RS(50%) RS(25%)
OFW 4.6436 4.2325 3.1949 3.1396

Meta-FW 26.5808 26.5810 22.8794 21.1206

Table 2: Summary of computation time in seconds.

given in Fig. 2a. For OFW-inexact and Meta-FW-inexact, we
have considered only 25% of the samples full gradient from
random locations at each iteration. As presented in Fig. 2a,
OFW performs better than online conditional gradient (OCG),
a projection-free algorithm of [13] when full gradient infor-
mation is available. We remark that the Meta-FW algorithm
performs best among all the algorithms when full gradient
is available. A similar behavior is observed with the partial
information availability too. Also Fig. 2b shows that OGD
is the slowest as compared to all the algorithms due to the
required projection. For the experiments, we have considered
m = n = 20. To implement the Meta-Frank Wolfe algorithm,
we fix K = 30.

Background extraction problem: In this experiment, we
extend the matrix completion problem on real dataset from
[39]. At each instant we observe a video frame and collect
it into matrix Mt. The goal of the problem is to extract the
background from the video which is conceptually the low-rank
estimate Mt of the data matrix. The problem is then given as:

min
Lt

‖Mt − Lt‖2F +
1

2
‖Lt‖2F such that ‖Lt‖∗ ≤ k. (9)

The results in Fig. 1 are generated using OFW with differ-
ent samples of gradient at different instants. Note that online
Frank-Wolfe yields effective performance for this application
as demonstrated in Fig. 1 – the cars are removed from the
frame. We describe the effectiveness of using random sam-

pling (RS) which makes the gradient inexact by summarizing
the execution times in Table 2, where we observe thatn increas-
ing RS yields quick completion. The proposed OFW algorithm
performs well for the background subtraction application since
the cars are completely removed from the frames, as clear
from 2nd to 5th columns. Please see the video appended to
the submission to observe Frank-Wolfe implementing online
background subtraction.
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Fig. 2: (a) Comparison of dynamic regrets of different algorithms for
the matrix completion. (b) Runtime comparison of Frank-Wolfe and
Meta Frank-Wolfe compared to alternatives on matrix complication.
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