

Decentralized Online Nonparametric Learning

Alec Koppel*, Santiago Paternain †, Cédric Richard§, Alejandro Ribeiro†

*U.S. Army Research Laboratory, Adelphi, MD

†University of Pennsylvania

§ Laboratoire Lagrange at the University of Nice Sophia-Antipolis.

Asilomar Conference, October 31, 2018, Pacific Grove, CA.

Distributed Learning

- ▶ Network of agents $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ aims to make inferences from data
- ► Sensor Networks, multi-robot teams, internet of things
- ► For instance, distributed training of a classifier for some data set

A Centralized Solution

- ▶ $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}$ is random pair \Rightarrow training examples
- ▶ $\ell : \mathcal{W} \to \mathbb{R}$ convex loss $(\mathcal{W} \subset \mathbb{R}^p)$, merit of statistical model
- ▶ Find parameters $\mathbf{w}^* \in \mathbb{R}^p$ that minimize expected risk $L(\mathbf{w})$

$$\mathbf{w}^* := \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathcal{L}(\mathbf{w}) := \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w}^{\top}\mathbf{x},\mathbf{y})]$$

- ► Convex Optimization Problem for *linear statistical models* ⇒ e.g., $v = \mathbf{w}^T \mathbf{x} \in \mathbb{R}$ or $y = \text{sgn}(\mathbf{w}^T \mathbf{x}) \in \{-1, 1\}$
- ► Solve with favorite descent method ⇒ Good Performance

Easy to Implement over Networks

- ▶ Each agent *i* has a local copy of the classifier \mathbf{w}_i with $i = 1 \dots |\mathcal{V}|$
 - \Rightarrow Observes some training examples \Rightarrow $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}_i \times \mathcal{Y}_i$

$$\begin{aligned} \mathbf{w}^* := & \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^{p|\mathcal{V}|}} \sum_{i=1}^{|\mathcal{V}|} \mathbb{E}_{\mathbf{x}_i, \mathbf{y}_i} \left[\ell(\mathbf{w}_i^\top \mathbf{x}_i, \mathbf{y}_i) \right] \\ & s.t. \quad \mathbf{w}_i = \mathbf{w}_j \quad \text{for all} \quad j \in \mathcal{N}_i \end{aligned}$$

- Convex Optimization Problem for linear statistical models
- Solve with saddle point algorithms or penalty methods
 - ⇒ Can be implemented in a distributed fashion

Data is frequently nonlinear

► The statistical model of complex data sets is nonlinear

- Neural Networks or Kernel Methods in centralized solution
- In this talk we focus on Distributed Kernel Methods
 - ⇒ Contribution: each agent learns distinct kernel function
 - ⇒ new penalty function that incentivizes coordination

Data is frequently nonlinear

► The statistical model of complex data sets is nonlinear

- Neural Networks or Kernel Methods in centralized solution
- In this talk we focus on Distributed Kernel Methods
 - ⇒ Contribution: each agent learns distinct kernel function
 - ⇒ new penalty function that incentivizes coordination

Context

- ► Online consensus opt. for dist. learning (Tsitsiklis, Nedic, etc.)
 - ⇒ restrict statistical models to be linear (parameter vectors)
- ▶ Decentralized training of CNNs ⇒ non-convex consensus probs.
 - ⇒ Hong, Aldo, many others in past couple years
- Non-convexity precludes stable online model adaptation
 - ⇒ but good for stochastic algs. for large batch CNN training
- ► Focus on networked systems with nonlinear function approx.
 - ⇒ motivated by distributed intelligence w/ env. interaction
- Some prior works on distributed online kernel methods
 - ⇒ complexity reduction via fixing kernel matrix size, may diverge
- Ours: globally convergent, sparse param. nonlinear funcs.
 - ⇒ in decentralized online setting

(i)
$$\langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathcal{X}$,

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- ▶ Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- ► Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x}, \mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

(i)
$$\langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathcal{X}$,

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- ► Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X} ,$$

$$(\textit{ii}) \ \mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}} \quad \text{for all } \mathbf{x} \in \mathcal{X} \ .$$

- ► Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- ► Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- ► Property (i) ⇒ Will allow us to compute derivatives
- Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}
ight\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

Function Representation

- ▶ Consider empirical risk minimization case: sample size $N < \infty$
- ► Representer Theorem:

$$f^* = \operatorname*{argmin}_f \frac{1}{N} \sum_{n=1}^N \ell(f(\mathbf{x}_n), y_n) + \frac{\lambda}{2} \left\| f \right\|_{\mathcal{H}}^2 = \sum_{m=1}^N w_m^* \; \kappa(\mathbf{x}_m, \mathbf{x}) \; .$$

▶ Representer Thm. into ERM \Rightarrow opt. over \mathcal{H} reduces to $\mathbf{w} \in \mathbb{R}^N$

$$f^* = \underset{\mathbf{w} \in \mathbb{R}^N}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \ell(\sum_{m=1}^N \mathbf{w}_m \kappa(\mathbf{x}_m, \mathbf{x}_n), \mathbf{y}_n) + \frac{\lambda}{2} \sum_{n,m=1}^N \mathbf{w}_n \mathbf{w}_m \kappa(\mathbf{x}_m, \mathbf{x}_n)$$

- ▶ Reduces to solve a convex optimization problem of dimension *N*.
- ▶ As $N \to \infty$ storage and computation issues are present
 - ⇒ This is known as the Curse of Kernelization

Distributed Function Estimation

- ▶ Each agents has a local copy $f_i \in \mathcal{H}$ with $i = 1 \dots |\mathcal{V}|$
- ▶ Define the stacked function $f = [f_1, f_2, \dots f_{|\mathcal{V}|}]^{\top} \in \mathcal{H}^{|\mathcal{V}|}$ and solve

$$p^* := \min_{f \in \mathcal{H}^{|\mathcal{V}|}} \sum_{i=1}^{|\mathcal{V}|} \mathbb{E}_{\mathbf{x}_i, y_i} \left[\ell(f_i(\mathbf{x}_i), \mathbf{y}_i) \right] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

$$s.t. \quad f_i = f_j \quad \text{for all} \quad i \in \mathcal{V} \quad \text{and} \quad j \in \mathcal{N}_i$$

We solve it approximately using a penalty method

$$\begin{split} f_{c}^{*} &= \operatorname*{argmin}_{f \in \mathcal{H}^{|\mathcal{V}|}} \psi_{c}(f) = \operatorname*{argmin}_{f \in \mathcal{H}^{|\mathcal{V}|}} \sum_{i \in \mathcal{V}} \mathbb{E}_{\mathbf{x}_{i}, \mathbf{y}_{i}} \left[\ell_{i}(f_{i}(\mathbf{x}_{i}), y_{i}) \right] + \frac{\lambda}{2} \left\| f \right\|_{\mathcal{H}}^{2} \\ &+ \frac{c}{2} \sum_{i \in \mathcal{V}} \sum_{i \in \mathcal{N}_{c}} \mathbb{E}_{\mathbf{x}_{i}} \left[\left(f_{i}(\mathbf{x}_{i}) - f_{j}(\mathbf{x}_{i}) \right)^{2} \right] \end{split}$$

Distributed Function Estimation

▶ How far from consensus is the approximate solution?

Proposition

Let $f_c^* = \operatorname{argmin}_{f \in \mathcal{H}^{|\mathcal{V}|}} \psi_c(f)$ and let p^* be the optimal cost of the distributed learning problem. Then for all penalties c > 0 we have that

$$\frac{1}{2} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} \mathbb{E}_{\mathbf{x}_i} \left\{ \left[f_{c,i}^*(\mathbf{x}_i) - f_{c,j}^*(\mathbf{x}_i) \right]^2 \right\} \leq \frac{p^*}{c}$$

Expected disagreement arbitrarily small by increasing c

Functional Derivative

▶ Let L(f) be the loss functional

$$L(f) = \sum_{i \in \mathcal{V}} \mathbb{E}_{\mathbf{x}_i, y_i}[\ell(f_i(\mathbf{x}_i), y_i)]$$

▶ Compute stochastic functional gradient of $\pounds(f)$

$$\nabla_{f_i}\ell(f_i(\mathbf{x}_{i,t}),y_{i,t})(\cdot) = \frac{\partial \ell(f_i(\mathbf{x}_{i,t}),y_{i,t})}{\partial f_i(\mathbf{x}_{i,t})} \frac{\partial f_i(\mathbf{x}_{i,t})}{\partial f_i}(\cdot)$$

▶ Use reproducing property of kernel (i), differentiate both sides:

$$\frac{\partial f_i(\mathbf{x}_{i,t})}{\partial f_i}(\cdot) = \frac{\partial \langle f_i, \kappa(\mathbf{x}_{i,t}, \cdot) \rangle_{\mathcal{H}}}{\partial f_i} = \kappa(\mathbf{x}_{i,t}, \cdot)$$

Functional Distributed SGD

▶ FDSGD applied to $\psi_c(t)$, given independent example $(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})$:

$$f_{i,t+1} = f_{i,t} - \eta_t \hat{\nabla}_{f_i} \psi_c(f_{i,t}(\mathbf{x}_{i,t}), \mathbf{y}_{i,t}) = (1 - \eta_t \lambda) f_{i,t} - \eta_t \omega_{i,t+1} \kappa(\mathbf{x}_{i,t}, \cdot)$$

$$\omega_{i,t+1} = \left(\ell'(f_i(\mathbf{x}_{i,t}), y_{i,t}) + c\sum_{j \in \mathcal{N}_i} \left(f_{i,t}(\mathbf{x}_{i,t}) - f_{j,t}(\mathbf{x}_{i,t})\right)\right)$$

▶ Use the kernel expansion of $f_{i,t}$ to write

$$f_{i,t+1}(\mathbf{x}) = (1 - \eta_t \lambda) \sum_{n=1}^{t-1} w_{i,n} \kappa(\mathbf{x}_{i,n}, \mathbf{x}) - \eta_t \omega_{i,t+1} \kappa(\mathbf{x}_{i,t}, .)$$

► FDSGD: parametric updates on weights and dictionary

$$\mathbf{X}_{i,t+1} = [\mathbf{X}_{i,t}, \ \mathbf{X}_{i,t}], \ \mathbf{W}_{i,t+1} = [(1 - \eta_t \lambda) \mathbf{W}_{i,t}, \ -\eta_t \omega_{i,t+1}],$$

▶ Note that model order $M_t = t - 1$ grows by one at each step

Functional Distributed SGD

▶ FDSGD applied to $\psi_c(t)$, given independent example $(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})$:

$$f_{i,t+1} = f_{i,t} - \eta_t \hat{\nabla}_{f_i} \psi_c(f_{i,t}(\mathbf{x}_{i,t}), \mathbf{y}_{i,t}) = (1 - \eta_t \lambda) f_{i,t} - \eta_t \omega_{i,t+1} \kappa(\mathbf{x}_{i,t}, \cdot)$$

$$\omega_{i,t+1} = \left(\ell'(f_i(\mathbf{x}_{i,t}), y_{i,t}) + c \sum_{j \in \mathcal{N}_i} \left(f_{i,t}(\mathbf{x}_{i,t}) - f_{j,t}(\mathbf{x}_{i,t})\right)\right)$$

Use the kernel expansion of f_{i,t} to write

$$f_{i,t+1}(\mathbf{x}) = (1 - \eta_t \lambda) \sum_{n=1}^{t-1} w_{i,n} \kappa(\mathbf{x}_{i,n}, \mathbf{x}) - \eta_t \omega_{i,t+1} \kappa(\mathbf{x}_{i,t}, .)$$

Consensus-term

► FDSGD: parametric updates on weights and dictionary

$$\mathbf{X}_{i,t+1} = [\mathbf{X}_{i,t}, \mathbf{X}_{i,t}], \quad \mathbf{w}_{i,t+1} = [(1 - \eta_t \lambda) \mathbf{w}_{i,t}, -\eta_t \omega_{i,t+1}],$$

▶ Note that model order $M_t = t - 1$ grows by one at each step

Convergence Result

Theorem

Let $f_c^* := \operatorname{argmin}_{f \in \mathcal{H}} \psi_c(f)$, under diminishing step-size rules $\sum_{t=1}^\infty \eta_t = \infty$, $\sum_{t=1}^\infty \eta_t^2 < \infty$, with $\eta_0 < 1/\lambda$,

$$\lim_{t\to\infty}\|f_t-f_c^*\|_{\mathcal{H}}^2=0 \qquad \text{ a.s.}$$

Controlling Model Order

- ▶ Each agent learns $f_{c,i}^*$ in such a way that $M_{i,t} << \infty$ for each $f_{i,t}$
- Accomplished by fixing a error nbhd. around FDSGD iterates
 - ⇒ Remove maximal no. kernel dict. elements while inside nbhd.
- lacktriangle We propose using KOMP \Rightarrow kernel orthogonal matching pursuit
 - ⇒ a greedy compressive technique (Vincent & Bengio, 2002)

Kernel Matching Pursuit

► Fix approximation error €

- $\tilde{f}_{t+1} = f_t \eta \hat{\nabla}_f \psi_c(f_t)$
- Remove kernel element smallest error
- ▶ Project \tilde{t}_{t+1} onto resulting RKHS
- ▶ Repeat until error is larger than ε

Convergence Results

Theorem

Let $f_c^* := \operatorname{argmin}_{f \in \mathcal{H}} \psi_c(f)$. Given regularizer $\lambda > 0$, constant algorithm step-size η chosen such that $\eta < 1/\lambda$ and compression error $\epsilon = K\eta^{3/2} = \mathcal{O}(\eta^{3/2})$, where K is a positive scalar,

$$\liminf_{t\to\infty} \|f_t - f_c^*\|_{\mathcal{H}} \le \frac{\sqrt{\eta}}{\lambda} \Big(K|\mathcal{V}| + \sqrt{K^2|\mathcal{V}|^2 + \lambda\sigma^2} \Big) = \mathcal{O}(\sqrt{\eta}) \qquad a.s.$$

The model order of the function, M_t is finite for all t

- Bias induced by sparsification asymptotically doesn't hurt too bad
- ► Constant step-size, approx. budget ⇒ model order always finite

Online Multi-Class Kernel SVM

- ▶ 3 Gaussians per mixture, C = 5 classes total for this experiment \Rightarrow 15 total Gaussians generate data
- $\qquad \qquad \blacktriangleright \ \ell(\mathbf{f}(\mathbf{x}), y) = \max(0, 1 + f_r(\mathbf{x}) f_y(\mathbf{x})), \ r = \operatorname{argmax}_{c' \neq v} f_{c'}(\mathbf{x})$

- ▶ Grid colors ⇒ decision
- ▶ Black dots ⇒ kernels
- ► ~ 95.7% accuracy

Online Multi-Class Kenrel SVM

► Convergence to optimal solution

Online Multi-Class Kenrel SVM

Consensus error remains small

Online Multi-Class Kenrel SVM

▶ Bounded model order

Texture Classification

► Texture classification on Broadatz dataset via SVM

Texture Classification

▶ We observe convergence and finite Model Order

► Accuracy of 93.5% comparable to centralized case (95.6%)

Conclusion

- ► We need to go beyond linear statistical models to do Learning
- Kernels and Neural Networks are the common tools to do so
 - ⇒ Kernel methods yield convex optimization problems
- ► We presented a distributed Learning algorithm (FDSGD)
 - ⇒ Converges to a neighborhood of the optimal function
 - ⇒ while ensuring a bound on the model order for all times
- ► Future directions: apply to, e.g., SLAM, exploration, navigation
 - ⇒ reduce communication overhead
 - ⇒ each agent learns kernel function w/ distinct bandwidth