Decentralized Online Nonparametric Learning

Alec Koppel*, Santiago Paternain f, Cédric Richard?, Alejandro Ribeirof
*U.S. Army Research Laboratory, Adelphi, MD
fUniversity of Pennsylvania
§ Laboratoire Lagrange at the University of Nice Sophia-Antipolis.

Asilomar Conference, October 31, 2018, Pacific Grove, CA.

Koppel, Paternain, Richard, Ribeiro Decentralized Online Nonparametric Learning



Distributed Learning

» Network of agents G = (V, £) aims to make inferences from data
» Sensor Networks, multi-robot teams, internet of things
» For instance, distributed training of a classifier for some data set
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A Centralized Solution

v

(x,y) € X x Y is random pair = training examples
¢ : W — R convex loss (W C RP), merit of statistical model
Find parameters w* € RP that minimize expected risk L(w)

v

v

W* = argmin L(W) := argmin Exy[((W ' X,Y)]
w w

v

Convex Optimization Problem for linear statistical models
=eg,y=wxcRory=sgnw'x)c{-1,1}
Solve with favorite descent method =- Good Performance

v
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Easy to Implement over Networks

» Each agent i has a local copy of the classifier w; with i =1... [V
= Observes some training examples = (X,y) € X; x ),

VI
W* := argmin ZEX"’V’ [E(W,TX,',V,')]

v| <
weRPIVIE T

st. wi=w; forall jeWN,

» Convex Optimization Problem for linear statistical models
» Solve with saddle point algorithms or penalty methods
= Can be implemented in a distributed fashion
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Data is frequently nonlinear

» Neural Networks or Kernel Methods in centralized solution
» In this talk we focus on Distributed Kernel Methods
= Contribution: each agent learns distinct kernel function
= new penalty function that incentivizes coordination
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Context

» Online consensus opt. for dist. learning (Tsitsiklis, Nedic, etc.)
= restrict statistical models to be linear (parameter vectors)

v

Decentralized training of CNNs =- non-convex consensus probs.
= Hong, Aldo, many others in past couple years

Non-convexity precludes stable online model adaptation

= but good for stochastic algs. for large batch CNN training

v

v

Focus on networked systems with nonlinear function approx.

= motivated by distributed intelligence w/ env. interaction

Some prior works on distributed online kernel methods

= complexity reduction via fixing kernel matrix size, may diverge
Ours: globally convergent, sparse param. nonlinear funcs.
= in decentralized online setting

v

v

Koppel, Paternain, Richard, Ribeiro Decentralized Online Nonparametric Learning



Large-Scale Function Estimation

» Equip H with a unique kernel function, x : X x X — R, such that:
() (f,k(X,-))y = f(x) forallxe X,
(i) H = span{x(x,-)} forallxe X .

f(x)

» Property (i) = Will allow us to compute derivatives
» Kernel examples:

= Gaussian/RBF x(X,X') = exp {_%}

= polynomial x(x,X') = (x7x' + b)°
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Function Representation

v

Consider empirical risk minimization case: sample size N < oo
Representer Theorem:

v

N N
. 1 A2 .
f* = arg;mn N ,,?:1 Uf(Xn), ¥n) + > Ifll5, = m§:1 W 5(Xm, X)

» Representer Thm. into ERM = opt. over H reduces to w € RV
N
= argmin — Z£ Z Wmk(Xm, Xn), Yn) + Z Wiy Wk (Xm, Xn)
WERN nm 1

v

Reduces to solve a convex optimization problem of dimension N.
As N — oo storage and computation issues are present
= This is known as the Curse of Kernelization

v
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Distributed Function Estimation

» Each agents has a local copy f; ¢ Hwithi=1...]V|
» Define the stacked function f = [f;, f,... fiy,] T € !V and solve

VI
p* ‘= min ZEx, Yi [E (xl) yl)] +35 ”fHH

feHIVI <

s.t. f,-:f,- forall ieV and jeWN;

» We solve it approximately using a penalty method

fy = argmin () = argmin > " By, [6i(1i(X), )] + 5 IIfIIi
feHIVI feHIVI (=)

2303 B [(x) ~ (%))

i€V JEN;
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Distributed Function Estimation

» How far from consensus is the approximate solution?

Proposition
Let fy = argminsc4vi Yc(f) and let p* be the optimal cost of the
distributed learning problem. Then for all penalties ¢ > 0 we have that

S S B {0 - i) < 2

i€V JEN;

» Expected disagreement arbitrarily small by increasing ¢
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Functional Derivative

» Let L(f) be the loss functional
L(f) = D Ex y[ECfi(x). y)]

iey
» Compute stochastic functional gradient of £.(f)

OU(fi(Xi 1), Yit) OFi(Xi 1)

vfig( (X, t), yi, () = afi(Xi 1) of; ()

» Use reproducing property of kernel (i), differentiate both sides:

af,'(X," ) . a<fi:’<§(x/, 7)>’H _ .
o 0= o =)
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Functional Distributed SGD

» FDSGD applied to 1¢(f), given independent example (X; ;, i t):

fitrr = fit — eV ste(fie(Xit) Vie) = (1 — e\ Fie — newi e 5(Xi g, )

Wit41 = (fl(fi(xi,t),yl',t) +e ) (fialxip) — j,t(xi,t)))
JEN;

» Use the kernel expansion of f; ; to write

t—1
fitr1 (X) = (1 =) Z Wi nt(Xin, X) — 0w, 15X g )
n=1
» FDSGD: parametric updates on weights and dictionary
Xitr1 =[Xit, Xiels Wigr =[(1 = M)Wie, —niwi 1]

» Note that model order M; = t — 1 grows by one at each step
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Functional Distributed SGD

v

FDSGD applied to 1¢(f), given independent example (X t,Yi.t):

fitrr = fie — eV ihe(Fie(Xie), Vie) = (1 — e\ Fip — newi er15(Xi g, -)

Wi t+1 = (fl(fi(xi,t)d’i,t

v

Use the kernel expansion of f; ; to wri

t—1
fitp1(X) = (1 —meA) Z Wi,nk(Xi,n, X) — 1w, 1 5(Xi t, )
n=1 Consensus-term

v

FDSGD: parametric updates on weights and dictionary

Xitpr = Kits Xigl,  Wigpr = [(1T — e A)Wjg, —mpwirq]

v

Note that model order M; = t — 1 grows by one at each step
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Convergence Result

Theorem
Let f} := argminscq, ¢c(f), under diminishing step-size rules
Sy =00, )2y mE < oo, withno < 1/,

. %12 _
tl;ngo i — 5, =0 a.s.
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Controlling Model Order

» Each agent learns f;; in such a way that M; ; << oc for each f; ;

» Accomplished by fixing a error nbhd. around FDSGD iterates
= Remove maximal no. kernel dict. elements while inside nbhd.

» We propose using KOMP = kernel orthogonal matching pursuit
= a greedy compressive technique (Vincent & Bengio, 2002)
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Kernel Matching Pursuit

-~
- ~

-7 ~a
Ve
. . . ~ \
» Fix approximation error ¢ / ft.“ (Dey1, Weta) bY
7 ~ / KOMP 7
> frp1 = fr = nVie(fy) / \ L o
» Remove kernel element smallest error | ¢
L . 1~ (Dyiq,
» Project f;4 onto resulting RKHS stochastic gradient Jerr~ (D ,W’“)
. . \ /
» Repeat until error is larger than ¢ \ /
~
~

L]
Ji ~ (Dy,wy) HDt:;@'&ﬁq (d,, )}MH_]
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Convergence Results

Theorem

Let f; := argminsc4, ¢c(f). Given regularizer A > 0, constant algorithm
step-size ) chosen such thatn < 1/ and compression error
e = Kn®/2 = O(1*/?), where K is a positive scalar,

liminf |1 £ 2 < f(K|V| +1/K2|V]2 + Ao? ) =0/  as

The model order of the function, M; is finite for all t

» Bias induced by sparsification asymptotically doesn’t hurt too bad
» Constant step-size, approx. budget = model order always finite
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Online Multi-Class Kernel SVM

» 3 Gaussians per mixture, C = 5 classes total for this experiment
= 15 total Gaussians generate data
> ((f(x),y) = max(0, 1 + fr(x) — (X)), r = argmaxc_, for (X)

» Grid colors = decision
» Black dots = kernels

» ~ 95.7% accuracy
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Online Multi-Class Kenrel SVM

» Convergence to optimal solution

S e
w N OoN®

Global Objective
o
o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t, number of samples processed
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Online Multi-Class Kenrel SVM

» Consensus error remains small
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t, number of samples processed
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Online Multi-Class Kenrel SVM

» Bounded model order

30

N
[$)]
L

f

n
o
L

M; ¢, Model Order
o o

(8]
T
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Texture Classification

» Texture classification on Broadatz dataset via SVM

;-
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Texture Classification

» We observe convergence and finite Model Order
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t, number of samples processed, 14 t, number of samples processedyg4

» Accuracy of 93.5% comparable to centralized case (95.6%)
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Conclusion

v

We need to go beyond linear statistical models to do Learning
Kernels and Neural Networks are the common tools to do so
= Kernel methods yield convex optimization problems

» We presented a distributed Learning algorithm (FDSGD)

= Converges to a neighborhood of the optimal function

= while ensuring a bound on the model order for all times
Future directions: apply to, e.g., SLAM, exploration, navigation
= reduce communication overhead

= each agent learns kernel function w/ distinct bandwidth

v

v
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