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e Motivation




Stochastic optimization problem

| random variable

min F(x) = min [ f(x,&)p(d€) = min E[f(x, &)]. (1)
xX x J0 x
objective function" ‘ ‘— decision vector

probability distribution

 Have wide applications in machine learning, control and signal processing tasks.

Q: The probability distribution p is unknown —_— The expectation F(x) is not computable
One alternative solution: min F(x) = min < Zf(x &) (2)

> Draw N samples {&;}I, from the distribution p
> Solve the corresponding empirical risk minimization (ERM) problem



Stochastic optimization problem

1

Stochastic gradient descent (SGD)

min F(x) = min / f(x,€)p(d€) = min E[f(x, &)].
b b . ﬂ b
* The canonical tool for addressing stochastic optimization problems

> Approximate the true gradient V'F (x) with a mini-batch gradient Vf;(x) = %Zies VF(x, &)
> The update rule is:

At iteration k Xk+1 = Xk — akV 5, (Xk). (3)

[

step size

> S = {El, ...,Enk} is the mini-batch of samples at iteration k with n;, = |Sk| is the number of samples

> The SGD converge@ly or approximately E— To be addressed




Stochastic gradient descent (SGD) Xkt1 = Xk — k' V [, (XE).
Step-size a;, | * Constant step-size has fast rates < » Converge approximately
—
e Attenuating step-size converges exactly < — Reducing the rate to null

Batch-size n;, | » Mini batch is used to reduce the variance of stochastic approximation error

» Tighten asymptotic convergence radius

 Geometrically increasing batch-size converges exactly with constant step-size

!

Computationally expensive with large sample complexity

[Motivation: Allowing the batch-size grows as slow as possible while maintaining a fast rate with exact convergence ]
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Two scale adaptive algorithm

Preliminary

Characterize the convergence rate of SGD related to the batch-size n;, and step-size a;,

Three mild assumptions:

1. The gradient of expected objective function VF(x) is Lipschitz continuous: || VF(x) —VF(y) |[2< L | x—y |2
2. Objective functions {f (x, ;) } are differentiable and F(x) is £ —strongly convex

3. There exists a constant w such that || Var [Vfi(x)] 1< w

Groposition 1. With Assumptions 1-3, the SGD with constant step-size a;, = a and batch-size n, = n satisfies\

E[F(xk41) — F(x7)]
Ha) =12 200+ Lea? < r(a)**! (F(xo) — F(x")) + aLw (4)
\_)i?—)' - o 2n(20 — L)
::Q ~ " d
| ' =Qo error neighborhood term
\ convergence rate term /




Two scale adaptive algorithm

alow
2n(2/ - Lla)

Q2

Analysis of Proposition 1 E[F (X, X )1 < r (@) (F(X,) - F (X)) +
Q1

* The convergence rate term (Q; decreases with iteration k provided that r(a) < 1.

* The error neighborhood term @, determines the limiting radius of convergence. <— Inverse dependence onn

[Two scale adaptive (TSA) algorithm exploits the structure of ; and @, to improve performance ]

Two scale adaptive algorithm

< * Observe once (J; decays to be smaller than @,, SGD cannot converge to a tighter neighborhood than Q.

Either reduce step-size a or increase batch-size n to further reduce Q,.

» The TSA algorithm gives a strategy about when and how to make this change.



Two scale adaptive algorithm

alow
2n(2/ - Lla)

Q2

Two scale adaptive algorithm E[F (X, X )1 < r (@) (F(X,) - F (X)) +
Q1

TSA consists of two stages: the inner-scale stage performs SGD with constant step-size and batch-size, and the outer-scale
stage tunes parameters to tighten the radius of convergence.

Initialization

With initial step-size a5 and ny, we have

o,lw

QF =r(a,) " (F(x)-F(x)), Q3= 2@ Lia) (5)

* Note the rate r(ag) is a quadratic function of the step-size «,

.

. . : x 1 1
ag = 1/L is selected for an optimal decreasing rate —_— r= r(tj =1—I
e The corresponding Q% =-—2
2n,/

» To ensure the fastest decreasing of Q4, we fix the optimal step-size « = 1/L over all iterations and evolving
the batch-size n to tighten Q,.



Two scale adaptive algorithm

alow
2n(2/ - Lla)

Q2

Two scale adaptive algorithm E[F (X, X )1 < r (@) (F(X,) - F (X)) +
Q1

Inner-scale stage

We have a; = 1/L , ns, K as current step-size, batch-size and the beginning number of iteration at t-th inner scale stage.

|— passed number of iterations
AN .
@ = (1-1) e - Fe)).
o Lw w (6)

Q5 = —
7 2 (20 — Llay) — 2n,0°

* Then there exists K; such that K = max {Q1 > Q3}

I

the largest iteration before Q; drops below Q, The duration of t-th inner scale stage

E[(F(xx)—F(x"))] in @} is unknown, this criterion cannot be used directly.

* We then search for an alternative criterion for implementation



Two scale adaptive algorithm

alo
2n(2/ - Ll a)

Q>

Two scale adaptive algorithm E[F (X, )] < 1) (F(x,) —F (X)) +
Q1

Inner-scale stage
t-1

e Let{ng,..,n,_1}and {K,, ..., K,_1} be batch-sizes and durations of previous inner-scale stages such that K =) K,

i=1

* We then have E((F(xx) ~ F(x")] =E | (Flxgi-1 ) — F(x))]
A 2ot t=1  — Proposition 1 (7)
<(1-7 E [F(xzz;g ) — Flx )} Qb p
N\ Ke—1
< 2 (1 — %) E {F(ng;g k)~ F(x*)] . — Definition of K;_4
¢ Zz;cl; Ki+kt
* By recursively applying this property, we get Qi <2 (1 - E) (F(xo0) — F(x7)) (8)
/ ST Ktk w
The alternative criterion: K n};}x{?(l — E) (F(x0) — F(x7)) = o f} 9)



Two scale adaptive algorithm

alo
2n(2/ - Ll a)

Q>

Two scale adaptive algorithm E[F (X, )] < 1) (F(x,) —F (X)) +
Q1

Outer-scale stage

* Evolve the step-size and the batch-size to reduce the error neighborhood term Q,

/

Slow down the convergence rate r(a;) Increases the sample computational complexity

* Fix the step-size to maintain the fastest decreasing of Q4

* Increase the batch-size in one of two ways

Additive way Nne+1 = ne + Be, Br > 1,

[ Multiplicative way] Ni41 = Meng,  me > 1,
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Convergence

Exact convergence of TSA algorithm

» The sequence of objective values F (X}, ) generated by the TSA converges to the optimal value F(x*) exactly

[Theorem 1. Consider the TSA scheme. If Assumptions 1-3 hold, we have h
klim E[F(xk) — F(x")] =0,
klim E[|| xx —x" ||2] = 0.

g i J

* The TSA scheme inherits the asymptotic convergence behavior of SGD with attenuating step-size selection.

|

With constant step-size —_— Increase the convergence rate




Convergence

Sample complexity reduction

* One critical benefit of TSA is the sample complexity reduction compared with SGD

|

Require less sample computation to achieve an € — suboptimality

* For a clear comparison, we assume: 1. SGD uses the same optimal step-size and constant batch-size

2. The TSA uses the multiplicative way to increase batch-size with m; = m

ﬁeorem 2. Consider the TSA scheme with initial batch-size ny = 1 and the SGD with step-size « = 1/L and\
batch-size n. Let D = F(xy) — F(x") be the initial error. To achieve an € — suboptimality, the ratio between
the number of training samples required for TSA and SGD is

m [log,l__
v <

\ (m—1) [logl

£| | (10)
%1 y

t-'lm




Convergence

L—¢
mL

(m—1) [logl_ Qi—‘

m (lo g _

=
b

Sample complexity reduction 7 <

* The ratio is approximately proportional to O(—1/loge) + O(e).

(-~ -~ -~ -"-"-"-"--"-"-"-" -~ -"-"-"-"-"-"-"-"-"-"-"-"-"-~" "~ "~ -~ "~ ---—--"-=--"-"°-"-"°-‘--" - - -""- - T°-°--°x
, > For accurate solutions, i.e., ¢ is close to null, a significant sample complexity reduction is achieved |

m o o S o S S S S B S B B S S B S S B B G S B B S EEe B B S S S B S S B S S S S S S S B S S e B B S Bae e B S s .

* For special case when m = 2, we refer that

~<
AN
—_

e < D(1—¢/L)*/8

|

This is almost always true unless the initial point is very close to the optimizer

(11)

* OQverall, the TSA only increase the batch-size when necessary and saves sample complexity as much as possible
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Numerical simulation

Hand-written digits classification * MNIST dataset

v" Formulate the problem as a logistic regression to train a hand-written digit classifier

* Performance comparison between TSA and SGD schemes

—TSA scheme | —TSA scheme
—SGD with aftenuating step-size 0.085¢ —SGD with attenuating step-size
1 SGD with batch-size n=20 SGD with batch-size n=20
< 10 —SGD with batch-size n=200 g 0.08¢ —SGD with batch-size n=200
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k, number of iterations k, number of iterations
(a) Objective vs. iteration (overall figure) (b) Objective vs. iteration (larger figure)

* TSA has a comparable performance with SGD of n=200



Numerical simulation

Hand-written digits classification e Sample complexity comparison between TSA and SGD schemes
200 E——y sctl'teme | | 3 Table 1: Number of training samples required to reduce the objective
——SGD with attenuating step-size below 0.0622 for three algorithms: TSA. SGD with n = 200 and
150 SGD with batch-size n=20 | SGD with n = 20.
—35GD with batch-size n=200
- Number of required samples
< 100} TSA 55651
= SGD with n =200 | 111500
- SGDwithn =20 | oo
50
500 1000 1500 2000
k, number of iterations * Forane = 0.0622-suboptimality, TSA saves more

than a half samples compared with SGD of n=200.
* SGD of n=20 can never achieve this accuracy due to
the large error neighborhood term Q-

(c) Batch-size vs. iteration

* TSA saves almost half of sample complexity compared with SGD of n=200
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Conclusion

* Propose the two scale adaptive algorithm that balances the rate and variance in the
stochastic optimization problem.

* The exact convergence and the sample complexity is obtained for the TSA scheme

* Numerical simulations are performed to show strong performance of TSA compared
with the SGD.
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