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Motivation

Stochastic optimization problem
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• Have wide applications in machine learning, control and signal processing tasks. 

decision vector

random variable

objective function

probability distribution

The probability distribution 𝑝 is unknown The expectation 𝐹(𝑥) is not computableQ:

One alternative solution:

> Draw N samples 𝜉𝑖 𝑖=1
𝑁 from the distribution 𝑝

> Solve the corresponding empirical risk minimization (ERM) problem

(𝟏)

(𝟐)
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Stochastic optimization problem
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• The canonical tool for addressing stochastic optimization problemsStochastic gradient descent (SGD)

> Approximate the true gradient 𝛻𝐹(𝐱) with a mini-batch gradient 𝛻𝑓𝑆 𝐱 =
1

𝑛
σ𝑖∈𝑆 𝛻𝑓 𝐱, 𝝃𝒊

> The update rule is: 

At iteration 𝑘

step size

> 𝑆𝑘 = 𝝃𝟏, … , 𝝃𝒏𝒌 is the mini-batch of samples at iteration 𝑘 with 𝑛𝑘 = 𝑆𝑘 is the number of samples

> The SGD converges exactly or approximately To be addressed

(𝟑)
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Stochastic gradient descent (SGD)

Step-size 𝛼𝑘

Batch-size 𝑛𝑘

• Constant step-size has fast rates

 Mini batch is used to reduce the variance of stochastic approximation error  

Converge approximately

• Attenuating step-size converges exactly Reducing the rate to null

 Tighten asymptotic convergence radius

• Geometrically increasing batch-size converges exactly with constant step-size

Computationally expensive with large sample complexity

Motivation: Allowing the batch-size grows as slow as possible while maintaining a fast rate with exact convergence 



Outline

• Two scale adaptive algorithm

• Convergence and sample complexity reduction

• Numerical simulation

• Conclusions

7

• Motivation



Two scale adaptive algorithm
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Preliminary

Characterize the convergence rate of SGD related to the batch-size 𝑛𝑘 and step-size 𝛼𝑘

Three mild assumptions:

1. The gradient of expected objective function 𝛻F(x) is Lipschitz continuous:

2. Objective functions 𝑓(𝒙, 𝝃𝒊) are differentiable and F(x) is ℓ −strongly convex 

3. There exists a constant 𝜔 such that

> Assumptions 1-3 are mild and common in optimization analysis

Proposition 1.  With Assumptions 1-3, the SGD with constant step-size 𝛼𝑘 = 𝛼 and batch-size 𝑛𝑘 = 𝑛 satisfies 

error neighborhood term
convergence rate term

r α = 1 − 2ℓα + 𝐿ℓ𝛼2 (𝟒)
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Analysis of Proposition 1 * 1 *
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• The convergence rate term 𝑄1 decreases with iteration 𝑘 provided that 𝑟 𝛼 < 1.

• The error neighborhood term 𝑄2 determines the limiting radius of convergence. Inverse dependence on 𝑛

Two scale adaptive (TSA) algorithm exploits the structure of 𝑄1 and 𝑄2 to improve performance

Two scale adaptive algorithm

• Observe once 𝑄1 decays to be smaller than 𝑄2, SGD cannot converge to a tighter neighborhood than 𝑄2. 

• Either reduce step-size 𝛼 or increase batch-size 𝑛 to further reduce 𝑄2. 

 The TSA algorithm gives a strategy about when and how to make this change.
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Two scale adaptive algorithm

TSA consists of two stages: the inner-scale stage performs SGD with constant step-size and batch-size, and the outer-scale 
stage tunes parameters to tighten the radius of convergence.

Initialization

With initial step-size 𝛼0 and 𝑛0, we have
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• Note the rate 𝑟(𝛼0) is a quadratic function of the step-size 𝛼0

𝛼0 = 1/𝐿 is selected for an optimal decreasing rate * 1
1r r

L L
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• The corresponding 0
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0
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 To ensure the fastest decreasing of Q1, we fix the optimal step-size α = 1/𝐿 over all iterations and evolving 
the batch-size 𝑛 to tighten Q2.

(𝟓)
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Two scale adaptive algorithm * 1 *
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Inner-scale stage

We have 𝛼𝑡 = 1/𝐿 , 𝑛𝑡, 𝐾 as current step-size, batch-size and the beginning number of iteration at 𝑡-th inner scale stage.

passed number of iterations

• Then there exists 𝐾𝑡 such that

the largest iteration before Q1 drops below Q2 The duration of 𝑡-th inner scale stage

in 𝑄1
𝑡 is unknown, this criterion cannot be used directly.

• We then search for an alternative criterion for implementation

(𝟔)
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Two scale adaptive algorithm
* 1 *
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Inner-scale stage

• Let 𝑛0, … , 𝑛𝑡−1 and 𝐾0, … , 𝐾𝑡−1 be batch-sizes and durations of previous inner-scale stages such that  
1

1
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• We then have

Proposition 1

Definition of 𝐾𝑡−1

• By recursively applying this property, we get

The alternative criterion:

(𝟕)

(𝟖)

(𝟗)
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Two scale adaptive algorithm
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Outer-scale stage

• Evolve the step-size and the batch-size to reduce the error neighborhood term 𝑄2

Slow down the convergence rate 𝑟(𝛼𝑡) Increases the sample computational complexity

• Fix the step-size to maintain the fastest decreasing of 𝑄1

• Increase the batch-size in one of two ways

Additive way

Multiplicative way
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Exact convergence of TSA algorithm

• The sequence of objective values 𝐹 𝐱𝑘 generated by the TSA converges to the optimal value 𝐹 𝐱∗ exactly

Theorem 1.  Consider the TSA scheme. If Assumptions 1-3 hold, we have

• The TSA scheme inherits the asymptotic convergence behavior of SGD with attenuating step-size selection.

With constant step-size Increase the convergence rate
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Sample complexity reduction

• One critical benefit of TSA is the sample complexity reduction compared with SGD

Theorem 2.  Consider the TSA scheme with initial batch-size 𝑛0 = 1 and the SGD with step-size 𝛼 = 1/𝐿 and 
batch-size 𝑛. Let 𝐷 = 𝐹 𝐱0 − 𝐹(𝐱∗) be the initial error. To achieve an 𝜀 − suboptimality, the ratio between 
the number of training samples required for TSA and SGD is

Require less sample computation to achieve an 𝜀 − suboptimality

• For a clear comparison, we assume: 1. SGD uses the same optimal step-size and constant batch-size

2. The TSA uses the multiplicative way to increase batch-size with 𝑚𝑡 = 𝑚

(𝟏𝟎)
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Sample complexity reduction

This is almost always true unless the initial point is very close to the optimizer

• The ratio is approximately proportional to 

> For accurate solutions, i.e., 𝜀 is close to null, a significant sample complexity reduction is achieved

• For special case when 𝑚 = 2, we refer that

𝛾 < 1

• Overall, the TSA only increase the batch-size when necessary and saves sample complexity as much as possible

(𝟏𝟏)
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Numerical simulation

Hand-written digits classification

 Formulate the problem as a logistic regression to train a hand-written digit classifier

19

• MNIST dataset

• TSA has a comparable performance with SGD of n=200

• Performance comparison between TSA and SGD schemes
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Hand-written digits classification

20

• TSA saves almost half of sample complexity compared with SGD of n=200

• Sample complexity comparison between TSA and SGD schemes

• For an 𝜖 = 0.0622-suboptimality, TSA saves more 
than a half samples compared with SGD of n=200.

• SGD of n=20 can never achieve this accuracy due to 
the large error neighborhood term 𝑄2
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Conclusion

• Propose the two scale adaptive algorithm that balances the rate and variance in the 
stochastic optimization problem.

• The exact convergence and the sample complexity is obtained for the TSA scheme

• Numerical simulations are performed to show strong performance of TSA compared 
with the SGD.
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