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RL with general utilities

• Consider Markov Decision Process: MDP(S,A,P, r).

• Problems beyond cumulative reward?

(a) Exploration (b) Risk aversion (c) Imitation

• More examples...
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RL with general utilities

• Maximizing a policy’s long term utility:

maximize
θ

R(πθ) := F (λπθ)

– πθ the policy, parameterized by θ.

– λπ the unnormalized state-action occupancy measure.

λπsa :=
∞∑
t=0

γt · P
(
st = s, at = a

∣∣∣π, s0 ∼ ξ
)
.

– F a concave function.

• For concave F , it is sufficient to explore over stationary policies.
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General Utilities for RL

• cumulative reward, linear F :

F (λπθ) = 〈occupancy measure, reward〉.

• exploration over state space:

F (λπθ) = Entropy
(

state visitation frequency
)

• exploration over the feature space:

F (λπθ) = σmin

(
covariance matrix

)
.

• Imitation:

F (λπθ) = −DKL

(
occupancy measure

∣∣∣∣ some distribution
)
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Moving beyond cumulative rewards is hard

• Difficulty: the Bellman equation, value function, q function,
dynamic programming, all fail.

• Questions:

– Is policy search still viable?

– If so, can we do policy search in parameter space? to handle
large state-action space.

• This is important for deriving scalable parameterized algorithms for
large scale RL problems.
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What are the existing results?

• RL utilities beyond cumulative rewards: Max entropy exploration
(Hazan et al., 2019); Imitation (Schaa, 1997), (Argall et al.,
2008)...; Constrained RL: (Eitan Altman, 1999), (Achiam et al.,
2017) ...

– Many of them does not allow function approximation.
– We provide a general solution to these problems.

• Policy gradient: (Sutton et al., 2000), (Pirotta et al., 2015)...

– limited to cumulative rewards
– convergence to stationary point

• Recently efforts on PG method for cumulative rewards, convergence
to global optima: (Agarwal et al., 2019), (Mei et al., 2020)...

– We guarantee global optimality for more general utilities, via
novel perspective of hidden convexity.
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Whats the policy gradient for general utilities?

• Policy gradient theorem (Sutton et al., 2000), cumulative reward:

∇θV πθ = Eπθ
[ ∞∑
t=0

γtQπθ(st , at) · ∇θ log πθ(at |st)

]
.

It fails for general utilities since Q-function isn’t well-defined.

• For general utilities, by chain rule

∇θR(πθ)=
∑
s,a

∂F (λπθ)

∂λsa
· ∇θλπθsa.

• Both ∂F (λπθ )
∂λsa

and ∇θλπθsa are hard to estimate.
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Whats the policy gradient for general utilities?

Theorem (Variational Policy Gradient Theorem)

∇θR(πθ)= lim
δ→0+

argmax
x

inf
z

{
V (θ; z)+δ∇θV (θ; z)>x−F ∗(z)−δ

2
‖x‖2

}
.

• F ∗: convex conjugate of F .

• z : the shadow reward.

• V (θ; z): cumulative reward with reward function z , policy πθ.
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Landscape of the nonconvex utility

• maxθ R(πθ) is highly nonconvex: saddle points, bad local optimas.

Theorem
Under proper assumptions, every first-order stationary solution of the
(possibly nonsmooth) nonconvex problem

max
θ

R(πθ)

is a global optimal solution.

9



Rate of convergence to global optima

Theorem
Consider the policy gradient update

θt+1 = θt + η∇θR(πθt ).

Under proper assumptions, the policy gradient update satisfies

R(πθ∗)−R(πθt ) ≤ O
(
1/t
)
.

Additionally, if F (·) is strongly concave, we have

R(πθ∗)−R(πθt )≤O
(

exp{−α · t}
)
, α ∈ (0, 1).

• For tabular MDP, no parameterization: O(1/ε) iteration complexity.

• Improving the O(1/ε2) state-of-the-art result.
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Rate of convergence to global optima

• Key intuition behind: hidden convexity:

max
θ∈Θ

R(πθ) ⇐⇒ max
λ∈L

F (λ).

• Gradient flow in θ space ⇐⇒ “gradient flow” in λ space.

θ∗

Constraint set Θ

λ∗

Contour of R(πθ)

Constraint set LΘ

Contour of F (λ)

λ0 = λπθ0

θ0

λ0
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θ∈Θ
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λ1

θ2

λ2

θ3
λ3

etc.
...

etc....
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Summary of contribution

• General RL utilities beyond cumulative reward.

• Variational Policy Gradient Theorem: estimate policy gradient for
general utilities via minimax optimization.

• Global convergence of variational policy gradient updates: exploit
the hidden convexity in the occupancy measure.

• State-of-the-art convergence rate.
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Thank you!
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