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Distributed Transmit Beamforming

I Transmits a signal over multiple antennas and adjusts their phase, add
it constructively at the destination

→ Common in satellite communications, radars, acoustics, etc

PC: Björnson E, Bengtsson M, Ottersten B. Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure
[lecture notes]. IEEE Signal Processing Magazine. 2014 Jun 13;31(4):142-8.

→ Distributed setting: improved security, interference reduction
⇒ Improved received signal-to-noise ratio (SNR)
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Beam Synthesis: At a Glance

I Consider n mobile agents at [xi ,yi ] with omnidirectional antenna

⇒ wi ∈ C: excitation of node (ai exp (jαi )), θ, α ∈ [0,2π)

⇒ ai : signal amplitude, αi : phase, k : wave number

→ Array Factor (AF) determines their ability to communicate

AF(θ) =
n−1∑
i=0

wi ej(kxi cos(θ)+kyi sin(θ))

A. Parayil, A. S. Bedi, and A. Koppel Joint Position and Beamforming Control 3



Problem Formulation

I

→ Given N samples from an a priori unknown desired beam AFd

→ How to match desired beam at given directions using n nodes?

min{ri,wi}n
i=1
‖AF− AFd‖2

2 ,

AF = H(r)w, ([H(r)]ml : ejk(xl cos θm+yl sin θm))

⇒ Adjust position and excitation of nodes to match desired beam

→ Problem of interest:
⇒ Synthesis of array for desired pattern using set of mobile nodes
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Problem Formulation

I Minimize array elements filling the antenna aperture:

⇒ Reduced electronic beamforming cost
⇒ Reduction in power consumption, overall design complexity

→ How to select minimum agents out of given set for desired beam ?
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Agent Selection in Beamforming

I Sparse beamforming: Beam synthesis with few agents as possible

→ Reducing cardinality of active agent set
⇒ Minimizing agents with non-zero w̃

min
w̃
‖w̃‖0, s.t. ÃFd = Φw̃

⇒ ÃFd ∈ C2N : real and imaginary part of samples

⇒ Beam matching in real-imaginary space is linear

⇒ Equivalent to constrained `0 norm minimization
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Sparse Beamforming: State of Art
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Bayesian Approach: Overview

I Gaussian likelihood model for beamforming with N samples

p(ÃFd |w̃) ∝ (2πσ2)−N/2e−
‖ÃFd−Φw̃‖2

2
2σ2

⇒ Error in beam matching assumed as Gaussian distribution

→ Hierarchical approach: prior distribution on w̃ and hyperparameter,
γ

⇒ p(w̃i |γi ) , N (0, γi ), p(γ−1
i ) = Gamma(γ−1

i |a,b)

→ γi estimates controls w̃i
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Bayesian Approach to Agent Selection

I

Prior, p(w) for conventional SBL, Gaussian-Gamma Prior 1

→ Guarantees maximally sparse solutions1

⇒ Exisiting approach consider fixed layouts
⇒ Position of nodes bound reconstruction error

→ Accurate recovery with agent positions near to fictitious agents

1M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, JMLR, 2001
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Proposed Approach

I

→ Any other choice of hierarchical prior to further shrink agent set ?

⇒ A sharper w̃ distribution with a flat tail?

⇒ Might lead to undesirable pruning of the active agents

⇒ Increased error in beam matching

→ Joint position control with modified hierarchical prior
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Proposed Hierarchical Prior

I Proposed hierarchical prior for sharper w̃

p(w̃i |γi ) = N (0, γi ), p(γ−1
i ) = γ1−a

i e−b/γi

→ γi = 0 =⇒ w̃i = 0 is null
→ Equivalent to Gamma distribution for γi with a = 1,b = λ

2
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→ A sharper w̃ distribution with a flat tail
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Proposed Hierarchical Prior

I

→ Marginal log-likelihood for γ obtained by marginalizing over w̃

→ Additional term prunes active set effectively

→ Expected maximization of likelihood for iterative updates of γi , w̃i
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I Closed-form iterative updates for the hyperparameter γ and w̃

µ = w̃ = E
[
w̃|ÃFd , γ∗

]
= ΓΦ>Σ−1

ÃFd
ÃFd (1)

Σ = Γ− ΓΦ>Σ−1
ÃFd

ΦΓ (2)

γi =
2
(
µ2

i + Σii
)

1 +
√

1 + 4λ(µ2
i + Σii )

, for all i = 1, . . . ,n. (3)

→ Additional pruning may lead to error in beam matching
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Proposed Approach: Position Control

I How to reduce error from additional pruning?

→ Refined node positioning to address over pruning

→ With fixed w, the problem simplifies to

min
Hj

‖AFd −
[
H1 . . . Hn

]︸ ︷︷ ︸
unknowns, Hj∈CN

w‖2
2

→ Convex set, C1 ,
{

H ∈ RN×ns.t.for all j = 1, . . . ,n,H>j Hj ≤ N
}

→ Removes scaling ambiguity
→ Constraints H onto a convex set with bounded norm
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Proposed Approach: Position Control

I Refines agent positions using:
⇒ Iterative nonlinear least-squares in a constrained space
⇒ logarithmic transformation

→ Sequential least square update of Hj

Hj (i + 1) = Hj (i) + diag(w(j)w(j)>)−1(AFdw(j)> − H(i)ww(j)>),

Hj (i + 1)←
Hj (i + 1)

max(‖Hj‖2,N)

C2 ,
{

H ∈ RN×ns.t.for all j = 1, . . . ,n,∃r∗j ,e
jk∗〈r∗j ,(dθ1+...+dθN )〉

N∏
i=1

H(i , j)
}

Hj (i + 1)← ΠC2

[
Hj (i + 1)

]
, for all j = 1, . . . ,n
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Alternating Nonlinear Least-Squares with
a Hierarchical Gamma Prior

I
→ Iteratively updates agent excitation, removes inactive agents
→ Position control of pruned agent set reduces error
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Numerical Experiments
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Figure: Desired Beam b) Set of fictitious agents used for desired beam

I A set of 50 samples from the desired pattern by fictitious agents
→ Fictitious agents assumed to be in an equally spaced array
→ Transmits at 40 MHz with αm = π/4, am = 100 for all m = 1, . . . ,5
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Figure: Initial agent layouts

I

→ Different initial layouts with available set of 64 agents
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Different initial conditions
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Proposed

I Performance of Algorithm for three different initial layouts

→ Selects minimum set of active agents

→ Achieves better beam matching
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Conclusion

I An interweaved iterative approach for sparse beamforming

→ Adopts Bayesian framework for agent selection

→ Offers maximal sparsity for a given agent layout

→ Hierarchical prior forces high probability mass near to the null

→ Offers better shrinkage of the active agent set

→ Reduces pruning error with iterative projected block descent

→ Offers better beam matching with lower computational complexity
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Thank you
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